In the context of linear programming and convex geometry, a **Hilbert basis** refers to a specific type of generating set for a convex cone. A Hilbert basis of a polyhedral cone is characterized by the property that every point in the cone can be represented as a non-negative integral combination of a finite set of generators. This is closely related to the notion of (integer) linear combinations in linear programming.
Articles by others on the same topic
There are currently no matching articles.