Infinite-dimensional optimization refers to the area of mathematical optimization where the optimization problems are defined over spaces that have infinitely many dimensions. This concept is often encountered in various branches of mathematics, such as functional analysis, calculus of variations, and optimization theory, as well as in applications across physics, engineering, and economics. ### Key Concepts: 1. **Function Spaces**: In infinite-dimensional settings, we typically deal with function spaces where the variables of the optimization problem are functions rather than finite-dimensional vectors.
Articles by others on the same topic
There are currently no matching articles.