The Koszul–Tate resolution is a construction in algebraic geometry and homological algebra used to study certain algebraic structures, particularly those that involve differential forms or algebraic relations. It is named after Jean-Pierre Serre and William Tate, who contributed to the understanding of such resolutions. In simple terms, the Koszul-Tate resolution provides a way to resolve algebraic objects, such as modules or complexes associated with algebraic varieties, using tools from homological algebra.

Articles by others on the same topic (0)

There are currently no matching articles.