An L-semi-inner product is a generalization of the inner product concept used in mathematical analysis, particularly in the context of Lattice theory and specific types of spaces, such as function spaces, fuzzy sets, or ordered vector spaces. In a typical inner product space, the inner product satisfies properties such as linearity, symmetry, and positive definiteness. In contrast, an L-semi-inner product relaxes some of these conditions.
Articles by others on the same topic
There are currently no matching articles.