OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Lie groupoids

 Home Mathematics Fields of mathematics Applied mathematics Mathematical physics Differential geometry
 0 By others on same topic  0 Discussions  1970-01-01  See my version
A **Lie groupoid** is a mathematical structure that generalizes the notion of a Lie group and captures certain aspects of differentiable manifolds and group theory. It provides a framework for studying categories of manifolds where both the "objects" and "morphisms" have smooth structures, and it is particularly useful in the study of differential geometry and mathematical physics. Here are the key components and concepts related to Lie groupoids: ### Components of a Lie Groupoid 1.

 Ancestors (6)

  1. Differential geometry
  2. Mathematical physics
  3. Applied mathematics
  4. Fields of mathematics
  5. Mathematics
  6.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook