OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Liouville's theorem (Hamiltonian)

 Home Mathematics Fields of mathematics Applied mathematics Mathematical physics Hamiltonian mechanics
 0 By others on same topic  0 Discussions  1970-01-01  See my version
Liouville's theorem in the context of Hamiltonian mechanics is a fundamental result concerning the conservation of phase space volume in a dynamical system. The theorem states that the flow of a Hamiltonian system preserves the volume in phase space. More formally, consider a Hamiltonian system described by \( (q, p) \), where \( q \) represents the generalized coordinates and \( p \) represents the generalized momenta.

 Ancestors (6)

  1. Hamiltonian mechanics
  2. Mathematical physics
  3. Applied mathematics
  4. Fields of mathematics
  5. Mathematics
  6.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook