In algebraic geometry and commutative algebra, a **local ring** is a particular type of ring that has a unique maximal ideal. More formally, if \( R \) is a commutative ring with identity, it is called a local ring if it contains a single maximal ideal \( \mathfrak{m} \). This property leads to a structure that facilitates the study of functions and algebraic entities that are "localized" around a certain point.
Articles by others on the same topic
There are currently no matching articles.