Loewner's torus inequality is a mathematical result related to the geometry of toroidal surfaces and the conformal mappings associated with them. Specifically, it provides a relationship between various metrics on a toroidal surface and the associated shapes that can be formed. In the context of complex analysis and geometric function theory, the Loewner torus inequality typically deals with the relationship between the area, the radius of the largest enclosed circle, and the total perimeter.
Articles by others on the same topic
There are currently no matching articles.