The lower convex envelope, often referred to as the convex hull of a set of points, is a fundamental concept in computational geometry and optimization. It essentially represents the smallest convex shape that can encompass a given set of points or an entire function. For a set of points in a Euclidean space, the lower convex envelope is the boundary of the convex hull that lies below the given points.

Articles by others on the same topic (0)

There are currently no matching articles.