OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Minimal surface

 Home Mathematics Fields of mathematics Applied mathematics Mathematical physics Differential geometry
 0 By others on same topic  0 Discussions  1970-01-01  See my version
A minimal surface is a surface that locally minimizes its area for a given boundary. More formally, a minimal surface is defined as a surface with a mean curvature of zero at every point. This means that, at each point on the surface, the surface is as flat as possible and does not bend upwards or downwards. Minimal surfaces can often be described using parametric equations or as graphs of functions.

 Ancestors (6)

  1. Differential geometry
  2. Mathematical physics
  3. Applied mathematics
  4. Fields of mathematics
  5. Mathematics
  6.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook