The Mittag-Leffler function is a special function significant in the fields of mathematical analysis, particularly in the study of fractional calculus and complex analysis. It generalizes the exponential function and is often encountered in various applications, including physics, engineering, and probability theory. The Mittag-Leffler function is typically denoted as \( E_{\alpha}(z) \), where \( \alpha \) is a complex parameter and \( z \) is the complex variable.

Articles by others on the same topic (0)

There are currently no matching articles.