Neural backpropagation, commonly referred to as backpropagation, is an algorithm used for training artificial neural networks. It utilizes a method called gradient descent to optimize the weights of the network in order to minimize the error in predictions made by the model. ### Key Components of Backpropagation: 1. **Forward Pass**: - The input data is fed into the neural network, and activations are computed layer by layer until the output layer is reached.
Articles by others on the same topic
There are currently no matching articles.