A Noetherian topological space is a type of topological space that satisfies a particular property related to its open sets, inspired by Noetherian rings in algebra. Specifically, a topological space \( X \) is called Noetherian if it satisfies the following condition: - **Finite Intersection Property**: Every open cover of \( X \) has a finite subcover.
Articles by others on the same topic
There are currently no matching articles.