OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Normal operator

 Home Mathematics Fields of mathematics Algebra Linear algebra Linear operators
 0 By others on same topic  0 Discussions  1970-01-01  See my version
In functional analysis and linear algebra, a **normal operator** is a bounded linear operator \( T \) on a Hilbert space that commutes with its adjoint. Specifically, an operator \( T \) is said to be normal if it satisfies the condition: \[ T^* T = T T^* \] where \( T^* \) is the adjoint of \( T \). ### Key Properties of Normal Operators 1.

 Ancestors (6)

  1. Linear operators
  2. Linear algebra
  3. Algebra
  4. Fields of mathematics
  5. Mathematics
  6.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook