OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Ramanujan tau function

 Home Mathematics Fields of mathematics Combinatorics Special functions Zeta and L-functions
 0 By others on same topic  0 Discussions  1970-01-01  See my version
The Ramanujan tau function, denoted as \(\tau(n)\), is a function in number theory that arises in the study of modular forms. It is defined for positive integers \(n\) and is deeply connected to the theory of partitions and modular forms. ### Definition The tau function is defined via the coefficients of the q-expansion of the modular discriminant \(\Delta(z)\), which is a specific modular form of weight 12.

 Ancestors (6)

  1. Zeta and L-functions
  2. Special functions
  3. Combinatorics
  4. Fields of mathematics
  5. Mathematics
  6.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook