A **spherical 3-manifold** is a type of three-dimensional manifold that is topologically equivalent to a quotient of the 3-dimensional sphere \( S^3 \) by a group of isometries (which preserve distances). More formally, a spherical 3-manifold can be described as a space of the form \( S^3 / G \), where \( G \) is a group of finite isometries of the 3-sphere.
Articles by others on the same topic
There are currently no matching articles.