OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Tangent bundle

 Home Mathematics Fields of mathematics Applied mathematics Mathematical physics Differential topology
 0 By others on same topic  0 Discussions  1970-01-01  See my version
In differential geometry, the tangent bundle is a fundamental construction that enables the study of the properties of differentiable manifolds. It provides a way to associate a vector space (the tangent space) to each point of a manifold, facilitating the analytical treatment of curves, vector fields, and differential equations. ### Definition: For a differentiable manifold \( M \), the tangent bundle \( TM \) is defined as the collection of all tangent spaces at each point of \( M \).

 Ancestors (6)

  1. Differential topology
  2. Mathematical physics
  3. Applied mathematics
  4. Fields of mathematics
  5. Mathematics
  6.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook