OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Taut submanifold

 Home Mathematics Fields of mathematics Applied mathematics Mathematical physics Differential geometry
 0 By others on same topic  0 Discussions  1970-01-01  See my version
A **taut submanifold** is a concept from differential geometry and relates to certain properties of submanifolds within a larger manifold, particularly in the context of Riemannian geometry and symplectic geometry. In general, a submanifold \( M \) of a manifold \( N \) is said to be **taut** if it can be defined as the zero locus of a smooth section of a certain bundle over \( N \).

 Ancestors (6)

  1. Differential geometry
  2. Mathematical physics
  3. Applied mathematics
  4. Fields of mathematics
  5. Mathematics
  6.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook