Transfinite interpolation is a mathematical technique used to create a continuous surface or function that passes through a given set of points, typically in a multidimensional space. It extends the concept of interpolation beyond finite-dimensional spaces to infinite-dimensional or higher-dimensional contexts. The technique is particularly useful in the context of geometric modeling, computer graphics, and numerical analysis. The key idea is to define a function that satisfies certain properties at specified boundary points (or control points) while allowing for continuity and smoothness in the interpolation.
Articles by others on the same topic
There are currently no matching articles.