The Weierstrass function is a famous example of a function that is continuous everywhere but differentiable nowhere. It was introduced by Karl Weierstrass in the 19th century and serves as a key example in analysis and the study of pathological functions. The Weierstrass function demonstrates that continuity does not imply differentiability, challenging intuitive notions about smooth functions.

Articles by others on the same topic (0)

There are currently no matching articles.