There are two cases:
  • (topological) manifolds
  • differential manifolds
Questions: are all compact manifolds / differential manifolds homotopic / diffeomorphic to the sphere in that dimension?
  • for topological manifolds: this is a generalization of the Poincaré conjecture.
    Original problem posed, for topological manifolds.
    Last to be proven, only the 4-differential manifold case missing as of 2013.
    Even the truth for all was proven in the 60's!
    Why is low dimension harder than high dimension?? Surprise!
    AKA: classification of compact 3-manifolds. The result turned out to be even simpler than compact 2-manifolds: there is only one, and it is equal to the 3-sphere.
    For dimension two, we know there are infinitely many: classification of closed surfaces
  • for differential manifolds:
    Not true in general. First counter example is . Surprise: what is special about the number 7!?
    Counter examples are called exotic spheres.
    Totally unpredictable count table:
    DimensionSmooth types
    11
    21
    31
    4?
    51
    61
    728
    82
    98
    106
    11992
    121
    133
    142
    1516256
    162
    1716
    1816
    19523264
    2024
    is an open problem, there could even be infinitely many. Again, why are things more complicated in lower dimensions??
So simple!! You can either:
  • cut two holes and glue a handle. This is easy to visualize as it can be embedded in : you just get a Torus, then a double torus, and so on
  • cut a single hole and glue a Möbius strip in it. Keep in mind that this is possible because the Möbius strip has a single boundary just like the hole you just cut. This leads to another infinite family that starts with:
A handle cancels out a Möbius strip, so adding one of each does not lead to a new object.
You can glue a Mobius strip into a single hole in dimension larger than 3! And it gives you a Klein bottle!
Intuitively speaking, they can be sees as the smooth surfaces in N-dimensional space (called an embedding), such that deforming them is allowed. 4-dimensions is enough to embed cover all the cases: 3 is not enough because of the Klein bottle and family.
sphere with two Möbius strips stuck into it as per the classification of closed surfaces.

Articles by others on the same topic (1)