Can be finite or infinite! TODO examples. But it is always a finitely generated group.
The elliptic curve group of all elliptic curve over the rational numbers is always a finitely generated group.
The number of points may be either finite or infinite. But when infinite, it is still a finitely generated group.
For this reason, the rank of an elliptic curve over the rational numbers is always defined.
TODO example.
Mordell's theorem guarantees that the rank (number of elements in the generating set of the group) is always well defined for an elliptic curve over the rational numbers. But as of 2023 there is no known algorithm which calculates the rank of any curve!
TODO list of known values and algorithms? The Birch and Swinnerton-Dyer conjecture would immediately provide a stupid algorithm for it.
web.math.pmf.unizg.hr/~duje/tors/rankhist.html gives a list with Elkies (2006) on top with:TODO why this non standard formluation?
Articles by others on the same topic
There are currently no matching articles.