By Xanadu.
Apparently meant to be higher level.
Homepage: pennylane.ai/
The official hello world is documented at: qiskit.org/documentation/intro_tutorial1.html and contains a Bell state circuit.
Our version at qiskit/hello.py.
Our example uses a Bell state circuit to illustrate all the fundamental Qiskit basics.
Sample program output,
counts
are randomized each time.First we take the quantum state vector immediately after the input.
We understand that the first element of
input:
state:
Statevector([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
dims=(2, 2))
probs:
[1. 0. 0. 0.]
Statevector
is , and has probability of 1.0.Next we take the state after a Hadamard gate on the first qubit:
We now understand that the second element of the
h:
state:
Statevector([0.70710678+0.j, 0.70710678+0.j, 0. +0.j,
0. +0.j],
dims=(2, 2))
probs:
[0.5 0.5 0. 0. ]
Statevector
is , and now we have a 50/50 propabability split for the first bit.Then we apply the CNOT gate:
which leaves us with the final .
cx:
state:
Statevector([0.70710678+0.j, 0. +0.j, 0. +0.j,
0.70710678+0.j],
dims=(2, 2))
probs:
[0.5 0. 0. 0.5]
Then we print the circuit a bit:
qc without measure:
┌───┐
q_0: ┤ H ├──■──
└───┘┌─┴─┐
q_1: ─────┤ X ├
└───┘
c: 2/══════════
qc with measure:
┌───┐ ┌─┐
q_0: ┤ H ├──■──┤M├───
└───┘┌─┴─┐└╥┘┌─┐
q_1: ─────┤ X ├─╫─┤M├
└───┘ ║ └╥┘
c: 2/═══════════╩══╩═
0 1
qasm:
OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];
creg c[2];
h q[0];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];
And finally we compile the circuit and do some sample measurements:
qct:
┌───┐ ┌─┐
q_0: ┤ H ├──■──┤M├───
└───┘┌─┴─┐└╥┘┌─┐
q_1: ─────┤ X ├─╫─┤M├
└───┘ ║ └╥┘
c: 2/═══════════╩══╩═
0 1
counts={'11': 484, '00': 516}
counts={'11': 493, '00': 507}
In this example we will initialize a quantum circuit with a single CNOT gate and see the output values.
By default, Qiskit initializes every qubit to 0 as shown in the qiskit/hello.py. But we can also initialize to arbitrary values as would be done when computing the output for various different inputs.
Output:
which we should all be able to understand intuitively given our understanding of the CNOT gate and quantum state vectors.
┌──────────────────────┐
q_0: ┤0 ├──■──
│ Initialize(1,0,0,0) │┌─┴─┐
q_1: ┤1 ├┤ X ├
└──────────────────────┘└───┘
c: 2/═════════════════════════════
init: [1, 0, 0, 0]
probs: [1. 0. 0. 0.]
init: [0, 1, 0, 0]
probs: [0. 0. 0. 1.]
init: [0, 0, 1, 0]
probs: [0. 0. 1. 0.]
init: [0, 0, 0, 1]
probs: [0. 1. 0. 0.]
┌──────────────────────────────────┐
q_0: ┤0 ├──■──
│ Initialize(0.70711,0,0,0.70711) │┌─┴─┐
q_1: ┤1 ├┤ X ├
└──────────────────────────────────┘└───┘
c: 2/═════════════════════════════════════════
init: [0.7071067811865475, 0, 0, 0.7071067811865475]
probs: [0.5 0.5 0. 0. ]
quantumcomputing.stackexchange.com/questions/13202/qiskit-initializing-n-qubits-with-binary-values-0s-and-1s describes how to initialize circuits qubits only with binary 0 or 1 to avoid dealing with the exponential number of elements of the quantum state vector.
This is an example of the
qiskit.circuit.library.QFT
implementation of the Quantum Fourier transform function which is documented at: docs.quantum.ibm.com/api/qiskit/0.44/qiskit.circuit.library.QFTOutput:
So this also serves as a more interesting example of quantum compilation, mapping the
init: [1, 0, 0, 0, 0, 0, 0, 0]
qc
┌──────────────────────────────┐┌──────┐
q_0: ┤0 ├┤0 ├
│ ││ │
q_1: ┤1 Initialize(1,0,0,0,0,0,0,0) ├┤1 QFT ├
│ ││ │
q_2: ┤2 ├┤2 ├
└──────────────────────────────┘└──────┘
transpiled qc
┌──────────────────────────────┐ ┌───┐
q_0: ┤0 ├────────────────────■────────■───────┤ H ├─X─
│ │ ┌───┐ │ │P(π/2) └───┘ │
q_1: ┤1 Initialize(1,0,0,0,0,0,0,0) ├──────■───────┤ H ├─┼────────■─────────────┼─
│ │┌───┐ │P(π/2) └───┘ │P(π/4) │
q_2: ┤2 ├┤ H ├─■─────────────■──────────────────────X─
└──────────────────────────────┘└───┘
Statevector([0.35355339+0.j, 0.35355339+0.j, 0.35355339+0.j,
0.35355339+0.j, 0.35355339+0.j, 0.35355339+0.j,
0.35355339+0.j, 0.35355339+0.j],
dims=(2, 2, 2))
init: [0.0, 0.35355339059327373, 0.5, 0.3535533905932738, 6.123233995736766e-17, -0.35355339059327373, -0.5, -0.35355339059327384]
Statevector([ 7.71600526e-17+5.22650714e-17j,
1.86749130e-16+7.07106781e-01j,
-6.10667421e-18+6.10667421e-18j,
1.13711443e-16-1.11022302e-16j,
2.16489014e-17-8.96726857e-18j,
-5.68557215e-17-1.11022302e-16j,
-6.10667421e-18-4.94044770e-17j,
-3.30200457e-16-7.07106781e-01j],
dims=(2, 2, 2))
QFT
gate to Qiskit Aer primitives.If we don't
transpile
in this example, then running blows up with:
qiskit_aer.aererror.AerError: 'unknown instruction: QFT'
The second input is:
and the output of that approximately:
which can be defined simply as the normalized DFT of the input quantum state vector.
[0, 1j/sqrt(2), 0, 0, 0, 0, 0, 1j/sqrt(2)]
From this we see that the Quantum Fourier transform is equivalent to a direct discrete Fourier transform on the quantum state vector, related: physics.stackexchange.com/questions/110073/how-to-derive-quantum-fourier-transform-from-discrete-fourier-transform-dft
This function does quantum compilation. Shown e.g. at qiskit/qft.py.
You get an error like this if you forget to call
Related: quantumcomputing.stackexchange.com/questions/34396/aererror-unknown-instruction-c-unitary-while-using-control-unitary-operator/35132#35132
qiskit.transpile()
:
qiskit_aer.aererror.AerError: 'unknown instruction: QFT'
Articles by others on the same topic
There are currently no matching articles.