Repeat this mantra:
Only decentralize when inevitable.
Only decentralize when inevitable.
Only decentralize when inevitable.
This is what society gets for not using open knowledge: some of its best minds will be bound to waste endless hours reversing some useless technology.
With that said, even when you do have the source code, reading run logs and using debuggers are a sort of reverse engineering at heart.
One of the most jaw dropping reverse engineering projects Ciro has ever seen is the Super Mario 64 reverse engineering project.
How software engineers view science:
Science is the reverse engineering of nature.
Ciro Santilli had once assigned this as one of Ciro Santilli's best random thoughts, but he later found that Wikipedia actually says exactly that: en.wikipedia.org/wiki/Reverse_engineering ("similar to scientific research, the only difference being that scientific research is about a natural phenomenon") so maybe that is where Ciro picked it up unconsciously in the first place.
A hot hot place.
Founded by Craig Venter by joining up other existing institutes.
These people don't fuck around.
Poor renaming choice.
Fantastic animations of molecular biology processes.
wehi.tv redirects to www.wehi.edu.au/wehi-tv.
This is the dude that made many of the amazing WEHImovies animation.
Unfortunately, the process appears to be quite manual and laborious, more art than simulation, based on the software list used: www.drewberry.com/faq
Ah, some of the coolest places on Earth?
Ciro Santilli sometimes fantasizes of having worked there in their golden years...
Original headquarters and laboratories: 463 West Street in New York, Manhattan area. On Surely You're Joking, Mr. Feynman Feynman mentions that in 1941 they could see the construction of the George Washington Bridge, presumably from that building, when William Shockley brought him over to visit to get a job there. However, the actual
Later:
Some interesting videos:
101 Crawfords Corner Rd Holmdel, NJ 07733 USA
It started with radio research apparently, including Karl Guthe Jansky.
They had a smaller building first: youtu.be/BPq_ZyOvbsg?t=51 and in 1962 opened the large new building.
600 Mountain Ave bldg 5, New Providence, NJ 07974, United States.
Became headquarters in 1967,
Drone footage: www.youtube.com/watch?v=z0Ld2KFjaC8 Bell LABS Headquarters Murray Hill NJ in 4K Drone Flight by ESTOUCHFPV (2017)
Notable inventions made there:
- the first transistor
- TODO confirm C
These people are serious.
Where nuclear weapons and nuclear power, and a ton of derived research is made.
For a fun and brief random software encounter with that universe, see the VisIt section of stackoverflow.com/questions/5854515/interactive-large-plot-with-20-million-sample-points-and-gigabytes-of-data/55967461#55967461.
This is where they moved the Chicago Pile-1 after they decided it might be a bad idea to run highly experimental nuclear reactions right in the middle of one of the most populous cities of the United States.
After it was reassembled, the Chicago Pile-1 was renamed as Chicago Pile 2 (CP2).
So more precisely, it is a continuation of the Metallurgical Laboratory.
It's still not that far though, only about 20 kilometers, and today is also a populated area.
Ciro Santilli maintains that they chose the site because the name is so cool. Wikipedia says it is derived from the Forest of Argonne, maybe it even shared etymology with the element argon.
Founded partly due to the influence of Edward Teller who thought Los Alamos National Laboratory was not making good progress on thermonuclear weapons, large part of which was developed there.
Located in Tennessee in the East of the United States.
The precursor organization to ORNL was called Clinton Engineer Works, where groundbreaking Manhattan Project experiments and nuclear production took place during World War II
Some key experiments carried out there include:
- 1943: X-10 Graphite Reactor: prototype Plutonium breeder reactor
- isotope separation to purify Uranium-235:
This was an intermediate step between the nuclear chain reaction prototype Chicago Pile-1 and the full blown plutonium mass production at Hanford site. Located in the Oak Ridge National Laboratory.
Precursor organization to the Oak Ridge National Laboratory, name that it took in January 1948.
Produced the enriched uranium used for Little Boy, located in the area/predecessor of Oak Ridge National Laboratory.
Historian Alan B. Carr:
- www.youtube.com/@AlanBCarr. IMPORTANT NOTE: Although Alan B. Carr is a Los Alamos National Laboratory (LANL) employee, this page has absolutely no formal connection with LANL.
Publicly released documents from the Los Alamos National Laboratory are marked with this identifier. This is for example the case of each video on ther YouTube channel: www.youtube.com/@LosAlamosNationalLab. E.g. Video "Historic, unique Manhattan Project footage from Los Alamos by Los Alamos National Lab" is marked with "LA-UR 11-4449".
www.osti.gov/biblio/1372821 contains "How to Get an LA-UR: Using RASSTI to Release Your Work" which is of interest: permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-26023. That document documents the acronym's expansion, plus it leaks some internal-only URLs such as lasearch.lanl.gov/oppie/service.
TODO is there somewhere you can search for the document for a given identifier? Some PDFs are listed at: sgp.fas.org/othergov/doe/lanl/index2b.html
Los Alamos Laboratory was the name of the Los Alamos National Laboratory site during the Manhattan Project, before it was renamed to Los Alamos National Laboratory.
Centerpiece of the CEA since the beginning of the French nuclear weapons program, headquarters since 2006.
As of 2023 the place was blurred on Google Maps staellite view, no wonder.
Ciro Santilli is a fan of this late 2010's buzzword.
It basically came about because of the endless stream of useless software startups made since the 2000's by one or two people with no investments with the continued increase in computers and Internet speeds until the great wall was reached.
Deep tech means not one of those. More specifically, it means technologies that require significant investment in expensive materials and laboratory equipment to progress, such as molecular biology technologies and quantum computing.
And it basically comes down to technologies that wrestle with the fundamental laws of physics rather than software data wrangling.
Computers are of course limited by the laws of physics, but those are much hidden by several layers of indirection.
Full visibility, and full control, make computer tasks be tasks that eventually always work out more or less as expected.
The same does not hold true when real Physics is involved.
Physics is brutal.
To start with, you can't even see your system very clearly, and often doing so requires altering its behaviour.
For example, in molecular biology, most great discoveries are made after some new technique is made to be able to observe smaller things.
But you often have to kill your cells to make those observations, which makes it very hard to understand how they work dynamically.
What we would really want would be to track every single protein as it goes about inside the cell. But that is likely an impossible dream.
The same for the brain. If we had observations of every neuron, how long would it take to understand it? Not long, people are really good at reverse engineering things when there is enough information available to do so, see also science is the reverse engineering of nature.
Then, even when you start to see the system, you might have a very hard time controlling it, because it is so fragile. This is basically the case of quantum computing in 2020.
It is for those reasons that deep tech is so exciting.
The next big things will come from deep tech. Failure is always a possibility, and you can't know before you try.
But that's also why its so fun to dare.
Stuff that Ciro Santilli considers "deep tech" as of 2020:
- brain-computer interface
- fusion power. The question there is, when is "deep", "too deep"?
Applications of power, we have to remember it is there to notice how awesome it is!
- lightning
- motors
- sending nad receiving communication signals
- computers, which in turn can do computations and improved communication
- www.iter.org/sci/MakingitWork ITER page mentions that 80% of energy goes out on neutrons and that capturing this is a major challenge[ref]
- 2024 DARPA announcement: x.com/DARPA/status/1819112110988657075
We're requesting info & ideas for fundamental breakthroughs to enable high-power, direct conversion from nuclear energy into electricity by converting reactor neutrons to alphas or betas for voltaics.
Most promising approaches as of 2020:
Once again, relies on superconductivity to reach insane magnetic fields. Superconductivity is just so important.
Ciro Santilli saw a good presentation about it once circa 2020, it seems that the main difficulty of the time was turbulence messing things up. They have some nice simulations with cross section pictures e.g. at: www.eurekalert.org/news-releases/937941.
Operated by a hand crank.