One of the four following states:
When unqualified as in "the Bell state", it generally just means .
The Bell states are entangled and non-separable. Intuitively, we can see that when we measure that state, the values of the first and second bit are strictly correlated. This is the hallmark of quantum computation: making up states where qubits are highly correlated to match a specific algorithmic answer, and opposed to uniformly random noise. For example, the Bell state circuit is a common hello world, e.g. it is used in the official Qiskit hello world.
A quantum circuit which when fed with input produces the Bell state.
Figure 1. Quantum circuit that generates the Bell state. Source.
The fundamental intuition for this circuit is as follows.
First the Hadamard gate makes the first qubit be in a 50/50 state.
Then, the CNOT gate gets controlled by that 50/50 value, and the controlled qubit also gets 50/50 chance as a result.
However, both qubits are now entangled: the result of the second qubit depends on the result of the first one. Because:
  • if the first qubit is 0, cnot is not active, and so the second qubit remains 0 as its input
  • if the first qubit is 1, cnot is active, and so the second qubit is flipped to 1