One of the four following states:
When unqualified as in "the Bell state", it generally just means .
The Bell states are entangled and non-separable. Intuitively, we can see that when we measure that state, the values of the first and second bit are strictly correlated. This is the hallmark of quantum computation: making up states where qubits are highly correlated to match a specific algorithmic answer, and opposed to uniformly random noise. For example, the Bell state circuit is a common hello world, e.g. it is used in the official Qiskit hello world.
A quantum circuit which when fed with input produces the Bell state.
Figure 1.
Quantum circuit that generates the Bell state
. Source.
The fundamental intuition for this circuit is as follows.
First the Hadamard gate makes the first qubit be in a 50/50 state.
Then, the CNOT gate gets controlled by that 50/50 value, and the controlled qubit also gets 50/50 chance as a result.
However, both qubits are now entangled: the result of the second qubit depends on the result of the first one. Because:
TODO clear example and application.

Articles by others on the same topic (1)

Quantum state by Wikipedia Bot 0
A quantum state is a fundamental concept in quantum mechanics that describes the state of a quantum system. It encapsulates all the information about the system and can be represented in several ways, such as: 1. **Wave Function**: In non-relativistic quantum mechanics, a quantum state can be represented by a wave function, usually denoted by the Greek letter psi (Ψ).