Approximates an original function by sines. If the function is "well behaved enough", the approximation is to arbitrary precision.
Fourier's original motivation, and a key application, is solving partial differential equations with the Fourier series.
Can only be used to approximate for periodic functions (obviously from its definition!). The Fourier transform however overcomes that restriction:
The Fourier series behaves really nicely in , where it always exists and converges pointwise to the function: Carleson's theorem.
But what is a Fourier series? by 3Blue1Brown (2019)
Source. Amazing 2D visualization of the decomposition of complex functions. New to topics? Read the docs here!