$L_{p}$ for $p==2$.

$L_{2}$ is by far the most important of $L_{p}$ because it is quantum mechanics states live, because the total probability of being in any state has to be 1!

$L_{2}$ has some crucially important properties that other $L_{p}$ don't (TODO confirm and make those more precise):

- it is the only $L_{p}$ that is Hilbert space because it is the only one where an inner product compatible with the metric can be defined:
- Fourier basis is complete for $L_{2}$, which is great for solving differential equation

Some sources say that this is just the part that says that the norm of a $L_{2}$ function is the same as the norm of its Fourier transform.

Others say that this theorem actually says that the Fourier transform is bijective.

The comment at math.stackexchange.com/questions/446870/bijectiveness-injectiveness-and-surjectiveness-of-fourier-transformation-define/1235725#1235725 may be of interest, it says that the bijection statement is an easy consequence from the norm one, thus the confusion.

TODO does it require it to be in $L_{1}$ as well? Wikipedia en.wikipedia.org/w/index.php?title=Plancherel_theorem&oldid=987110841 says yes, but courses.maths.ox.ac.uk/node/view_material/53981 does not mention it.

As mentioned at Section "Plancherel theorem", some people call this part of Plancherel theorem, while others say it is just a corollary.

This is an important fact in quantum mechanics, since it is because of this that it makes sense to talk about position and momentum space as two dual representations of the wave function that contain the exact same amount of information.

But only for the proper Riemann integral: math.stackexchange.com/questions/2293902/functions-that-are-riemann-integrable-but-not-lebesgue-integrable

## Articles by others on the same topic (0)

There are currently no matching articles