Stabilizer (group)

ID: stabilizer-group

Stabilizer (group) by Ciro Santilli 35 Updated +Created
Suppose we have a given permutation group that acts on a set of n elements.
If we pick k elements of the set, the stabilizer subgroup of those k elements is a subgroup of the given permutation group that keeps those elements unchanged.
Note that an analogous definition can be given for non-finite groups. Also note that the case for all finite groups is covered by the permutation definition since all groups are isomorphic to a subgroup of the symmetric group
TODO existence and uniqueness. Existence is obvious for the identity permutation, but proper subgroup likely does not exist in general.

New to topics? Read the docs here!