Suppose we have a given permutation group that acts on a set of n elements.
If we pick k elements of the set, the stabilizer subgroup of those k elements is a subgroup of the given permutation group that keeps those elements unchanged.
Note that an analogous definition can be given for non-finite groups. Also note that the case for all finite groups is covered by the permutation definition since all groups are isomorphic to a subgroup of the symmetric group
TODO existence and uniqueness. Existence is obvious for the identity permutation, but proper subgroup likely does not exist in general.
Or in other words: symmetric groups are boring, because they are basically everything already!
Note that odd permutations don't form a subgroup of the symmetric group like the even permutations do, because the composition of two odd permutations is an even permutation.
www.youtube.com/watch?v=U_618kB6P1Q GT18.2. A_n is Simple (n ge 5) by MathDoctorBob (2012)