IBM 2017 beryllium hydride ground state calculation on a quantum computer Updated 2025-05-21 +Created 1970-01-01
The Principles of Quantum Mechanics by Paul Dirac revised fourth edition (1967) Updated 2025-05-21 +Created 1970-01-01
Good film, it feels quite realistic.
It is a shame that they tried to include some particularly interesting stories but didn't have the time to develop them, e.g. Feynman explaining to the high school interns what they were actually doing. These are referred to only in passing, and likely won't mean anything to someone who hasn't read the book.
The film settings are particularly good, and give what feels like an authentic view of the times. Particularly memorable are the Indian caves shown the film. TODO name? Possibly Puye Cliff Dwellings. Puye apparently appears prominently up on another film about Los Alamos: The Atomic city (1952). It is relatively close to Los Alamos, about 30 km away.
The title is presumably a reference to infinities in quantum field theory? Or just to the infinity of love etc.? But anyways, the infinities in quantum field theory theory come to mind if you are into this kind of stuff and is sad because that work started after the war.
It is quite amazing to read through books such as The Supermen: The Story of Seymour Cray by Charles J. Murray (1997), as it makes you notice that earlier CPUs (all before the 70's) were not made with integrated circuits, but rather smaller pieces glued up on PCBs! E.g. the arithmetic logic unit was actually a discrete component at one point.
The reason for this can also be understood quite clearly by reading books such as Robert Noyce: The Man Behind the Microchip by Leslie Berlin (2006). The first integrated circuits were just too small for this. It was initially unimaginable that a CPU would fit in a single chip! Even just having a very small number of components on a chip was already revolutionary and enough to kick-start the industry. Just imagine how much money any level of integration saved in those early days for production, e.g. as opposed to manually soldering point-to-point constructions. Also the reliability, size an weight gains were amazing. In particular for military and spacial applications originally.
A briefing on semiconductors by Fairchild Semiconductor (1967)
Source. Uploaded by the Computer History Museum. There is value in tutorials written by early pioneers of the field, this is pure gold.
Shows:
- photomasks
- silicon ingots and wafer processing
Missileers by BBC (2000)
Source. Documentary about American ICBM crews working on the Francis. E. Warren Air Force Base. Wiki mentions that there are 3 main sites in the USA, and plainshumanities.unl.edu/encyclopedia/doc/egp.ii.042 suggests all/most of them are in the Great Plains area. They operate a Minuteman system, which as of 2021 is the only nuclear ICBM system in the USA.
Good documentary, shows well the day-to-day life of the operator, including outside of the work site.
- youtu.be/w1tMx27Q4O0?t=1390 they drive 100 miles to get to work. They do 8 alerts per month.
- youtu.be/w1tMx27Q4O0?t=1473 the actual missiles are a few miles away from the control center, scattered in a few different locations
- youtu.be/w1tMx27Q4O0?t=1619 they have a television in there at least. Presumably a pre-recorded selection.
Logistics support management by USAF
. Source. Shows logistic operations behind the American ICBM system of the time. Reuploaded to showcase the IBM 705 system used to track parts, notably the usage of a punch cards.The different only shows up for field, not with particles. For fields, there are two types of changes that we can make that can keep the Lagrangian unchanged as mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) chapter "4.5.2 Noether's Theorem for Field Theories - Spacetime":
- spacetime symmetry: act with the Poincaré group on the Four-vector spacetime inputs of the field itself, i.e. transforming into
- internal symmetry: act on the output of the field, i.e.:
From the spacetime theory alone, we can derive the Lagrangian for the free theories for each spin:Then the internal symmetries are what add the interaction part of the Lagrangian, which then completes the Standard Model Lagrangian.
The summary from www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/ is a winner:
1
/ \
2 3
/ \
4 5
In principle one could talk about tree traversal of unordered trees as a number of possible traversals without a fixed order. But we won't consider that under this section, only deterministic ordered tree traversals.
Course plan:
- Section "Programmer's model of quantum computers"
- look at a Qiskit hello world
- e.g. ours: qiskit/hello.py
- learn about quantum circuits.
- tensor product in quantum computing
- First we learn some quantum logic gates. This shows an alternative, and extremely important view of a quantum computer besides a matrix multiplication: as a circuit. Fundamental subsections:
- quantum algorithms
If you shine microwave radiation on a Josephson junction, it produces a fixed average voltage that depends only on the frequency of the microwave. TODO how is that done more precisely? How to you produce and inject microwaves into the thing?
The Wiki page gives the formula: en.wikipedia.org/wiki/Josephson_effect#The_inverse_AC_Josephson_effect You get several sinusoidal harmonics, so the output is not a perfect sine. But the infinite sum of the harmonics has a fixed average voltage value.
And en.wikipedia.org/wiki/Josephson_voltage_standard#Josephson_effect mentions that the effect is independent of the junction material, physical dimension or temperature.
All of the above, compounded with the fact that we are able to generate microwaves with extremely precise frequency with an atomic clock, makes this phenomenon perfect as a Volt standard, the Josephson voltage standard.
TODO understand how/why it works better.
Investigations on the theory of the Brownian movement by Einstein (1905) Updated 2025-05-21 +Created 1970-01-01
He was a leading figure at the MIT Radiation Laboratory, and later he was head at the Columbia University laboratory that carried out the crucial Lamb-Retherford experiment and the anomalous magnetic dipole moment of the electron published at The Magnetic Moment of the Electron by Kusch and Foley (1948) using related techniques.
Unlisted articles are being shown, click here to show only listed articles.