TODO: in high level terms, why is QED more general than just solving the Dirac equation, and therefore explaining quantum electrodynamics experiments?
Also, is it just a bunch of differential equation (like the Dirac equation itself), or does it have some other more complicated mathematical formulation, as seems to be the case? Why do we need something more complicated than
Advanced quantum mechanics by Freeman Dyson (1951) mentions:
A Relativistic Quantum Theory of a Finite Number of Particles is Impossible.
Bibliography:
- physics.stackexchange.com/questions/101307/dirac-equation-in-qft-vs-relativistic-qm
- physics.stackexchange.com/questions/44188/what-is-the-relativistic-particle-in-a-box/44309#44309 says:
By several reasons explained in textbooks, the Dirac equation is not a valid wavefunction equation. You can solve it and find solutions, but those solutions cannot be interpreted as wavefunctions for a particle
- physics.stackexchange.com/questions/64206/why-is-the-dirac-equation-not-used-for-calculations
- www.physicsforums.com/threads/is-diracs-equation-still-useful-after-qed-is-developed.663994/
A relativistic version of the Schrödinger equation.
Correctly describes spin 0 particles.
The most memorable version of the equation can be written as shown at Section "Klein-Gordon equation in Einstein notation" with Einstein notation and Planck units:
Has some issues which are solved by the Dirac equation:
- it has a second time derivative of the wave function. Therefore, to solve it we must specify not only the initial value of the wave equation, but also the derivative of the wave equation,As mentioned at Advanced quantum mechanics by Freeman Dyson (1951) and further clarified at: physics.stackexchange.com/questions/340023/cant-the-negative-probabilities-of-klein-gordon-equation-be-avoided, this would lead to negative probabilities.
- the modulus of the wave function is not constant and therefore not always one, and therefore cannot be interpreted as a probability density anymore
- since we are working with the square of the energy, we have both positive and negative value solutions. This is also a features of the Dirac equation however.
Bibliography:
- Video "Quantum Mechanics 12a - Dirac Equation I by ViaScience (2015)" at youtu.be/OCuaBmAzqek?t=600
- An Introduction to QED and QCD by Jeff Forshaw (1997) 1.2 "Relativistic Wave Equations" and 1.4 "The Klein Gordon Equation" gives some key ideas
- 2011 PHYS 485 lecture videos by Roger Moore from the University of Alberta at around 7:30
- www.youtube.com/watch?v=WqoIW85xwoU&list=PL54DF0652B30D99A4&index=65 "L2. The Klein-Gordon Equation" by doctorphys
- sites.ualberta.ca/~gingrich/courses/phys512/node21.html from Advanced quantum mechanics II by Douglas Gingrich (2004)
fafnir.phyast.pitt.edu/py3765/ Phys3765 Advanced Quantum Mechanics -- QFT-I Fall 2012 by E.S. Swanson mentions several milestone texts including: