Besides the angular momentum in each direction, we also have the total angular momentum:
Then you have to understand what each one of those does to the each atomic orbital:
- total angular momentum: determined by the azimuthal quantum number
- angular momentum in one direction ( by convention): determined by the magnetic quantum number
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.
TODO experiment. Likely Zeeman effect.
Why do multiple electrons occupy the same orbital if electrons repel each other? Updated 2024-12-15 +Created 1970-01-01
That is, two electrons per atomic orbital, each with a different spin.
As shown at Schrödinger equation solution for the helium atom, they do repel each other, and that affects their measurable energy.
However, this energy is still lower than going up to the next orbital. TODO numbers.
This changes however at higher orbitals, notably as approximately described by the aufbau principle.