The algorithm is completely analogous to Diffie-Hellman key exchange in that you efficiently raise a number to a power times and send the result over while keeping as private key.
The only difference is that a different group is used: instead of using the cyclic group, we use the elliptic curve group of an elliptic curve over a finite field.
Variant of Diffie-Hellman key exchange based on elliptic curve cryptography.
Encryption algorithms that run on classical computers that are expected to be resistant to quantum computers.
This is notably not the case of the dominant 2020 algorithms, RSA and elliptic curve cryptography, which are provably broken by Grover's algorithm.
However, as of 2020, we don't have any proof that any symmetric or public key algorithm is quantum resistant.
Post-quantum cryptography is the very first quantum computing thing at which people have to put money into.
The reason is that attackers would be able to store captured ciphertext, and then retroactively break them once and if quantum computing power becomes available in the future.
There isn't a shade of a doubt that intelligence agencies are actively doing this as of 2020. They must have a database of how interesting a given source is, and then store as much as they can given some ammount of storage budget they have available.
A good way to explain this to quantum computing skeptics is to ask them:Post-quantum cryptography is simply not a choice. It must be done now. Even if the risk is low, the cost would be way too great.
If I told you there is a 5% chance that I will be able to decrypt everything you write online starting today in 10 years. Would you give me a dollar to reduce that chance to 0.5%?