Overdetermination of Maxwell's equations Updated +Created
As seen from explicit scalar form of the Maxwell's equations, this expands to 8 equations, so the question arises if the system is over-determined because it only has 6 functions to be determined.
As explained on the Wikipedia page however, this is not the case, because if the first two equations hold for the initial condition, then the othe six equations imply that they also hold for all time, so they can be essentially omitted.
It is also worth noting that the first two equations don't involve time derivatives. Therefore, they can be seen as spacial constraints.
TODO: the electric field and magnetic field can be expressed in terms of the electric potential and magnetic vector potential. So then we only need 4 variables?
System of partial differential equations Updated +Created
In many important applications, what you have to solve is not just a single partial differential equation, but multiple partial differential equations coupled to each other. This is the case for many key PDEs including:
Why are complex numbers used in the Schrodinger equation? Updated +Created
Video 1.
Necessity of complex numbers in the Schrödinger equation by Barton Zwiebach (2017)
Source.
This useless video doesn't really explain anything, he just says "it's needed because the equation has an in it".
The real explanation is: they are not needed, they just allow us to write the equation in a shorter form, which is always a win: physics.stackexchange.com/questions/32422/qm-without-complex-numbers/557600#557600