Some sources say that this is just the part that says that the norm of a function is the same as the norm of its Fourier transform.
Others say that this theorem actually says that the Fourier transform is bijective.
The comment at math.stackexchange.com/questions/446870/bijectiveness-injectiveness-and-surjectiveness-of-fourier-transformation-define/1235725#1235725 may be of interest, it says that the bijection statement is an easy consequence from the norm one, thus the confusion.
TODO does it require it to be in as well? Wikipedia en.wikipedia.org/w/index.php?title=Plancherel_theorem&oldid=987110841 says yes, but courses.maths.ox.ac.uk/node/view_material/53981 does not mention it.