Some sources say that this is just the part that says that the norm of a function is the same as the norm of its Fourier transform.
The comment at math.stackexchange.com/questions/446870/bijectiveness-injectiveness-and-surjectiveness-of-fourier-transformation-define/1235725#1235725 may be of interest, it says that the bijection statement is an easy consequence from the norm one, thus the confusion.
TODO does it require it to be in as well? Wikipedia en.wikipedia.org/w/index.php?title=Plancherel_theorem&oldid=987110841 says yes, but courses.maths.ox.ac.uk/node/view_material/53981 does not mention it.
As mentioned at Section "Plancherel theorem", some people call this part of Plancherel theorem, while others say it is just a corollary.
This is an important fact in quantum mechanics, since it is because of this that it makes sense to talk about position and momentum space as two dual representations of the wave function that contain the exact same amount of information.
Articles by others on the same topic
The Plancherel theorem is a fundamental result in the field of harmonic analysis, particularly in the context of Fourier transforms and Fourier series. It establishes an important relationship between the \( L^2 \) spaces of functions and distributions, indicating that the Fourier transform is an isometry on these spaces.