Uranium emits them, you can see their mass to charge ratio under magnetic field and so deduce that they are electrons.
Caused by weak interaction TODO why/how.
The emitted electron kinetic energy is random from zero to a maximum value. The rest goes into a neutrino. This is how the neutrino was first discovered/observed indirectly. This is well illustrated in a decay scheme such as Figure "caesium-137 decay scheme".
Because they interact weakly with matter and mostly just escape out of nuclear reactors, you can likely locate all nuclear reactors on Earth by measuring neutrino flows:The CIA must love that shit, they must have had it years prior to this public paper.
The most important ones are:
- theory of everything. We are certain that our base equations are wrong, but we don't know how to fix them :-)
- full explanation of high-temperature superconductivity. Superconductivity already has a gazillion applications, and doing it in higher temperatures would add a gazillion more, and maybe this theoretical explanation would help us find new high temperature superconducting materials more effectively
- fractional quantum Hall effect 5/2
Other super important ones:
- neutrino mass measurement and explanation