Manifold Updated +Created
We map each point and a small enough neighbourhood of it to , so we can talk about the manifold points in terms of coordinates.
Does not require any further structure besides a consistent topological map. Notably, does not require metric nor an addition operation to make a vector space.
Manifolds are cool. Especially differentiable manifolds which we can do calculus on.
A notable example of a Non-Euclidean geometry manifold is the space of generalized coordinates of a Lagrangian. For example, in a problem such as the double pendulum, some of those generalized coordinates could be angles, which wrap around and thus are not euclidean.
Noether's theorem Updated +Created
For every continuous symmetry in the system (Lie group), there is a corresponding conservation law.
Furthermore, given the symmetry, we can calculate the derived conservation law, and vice versa.
As mentioned at buzzard.ups.edu/courses/2017spring/projects/schumann-lie-group-ups-434-2017.pdf, what the symmetry (Lie group) acts on (obviously?!) are the Lagrangian generalized coordinates. And from that, we immediately guess that manifolds are going to be important, because the generalized variables of the Lagrangian can trivially be Non-Euclidean geometry, e.g. the pendulum lives on an infinite cylinder.
Video 1.
The most beautiful idea in physics - Noether's Theorem by Looking Glass Universe (2015)
Source. One sentence stands out: the generated quantities are called the generators of the transforms.
Video 2.
The Biggest Ideas in the Universe | 15. Gauge Theory by Sean Carroll (2020)
Source. This attempts a one hour hand wave explanation of it. It is a noble attempt and gives some key ideas, but it falls a bit short of Ciro's desires (as would anything that fit into one hour?)
Video 3.
The Symmetries of the universe by ScienceClic English (2021)
Source. youtu.be/hF_uHfSoOGA?t=144 explains intuitively why symmetry implies consevation!