As per classification of finite fields those must be of prime power order.
Video "Finite fields made easy by Randell Heyman (2015)" at youtu.be/z9bTzjy4SCg?t=159 shows how for order . Basically, for order , we take:For a worked out example, see: GF(4).
- each element is a polynomial in , , the polynomial ring over the finite field with degree smaller than . We've just seen how to construct for prime above, so we're good there.
- addition works element-wise modulo on
- multiplication is done modulo an irreducible polynomial of order
However, there is nothing in the immediate definition that prevents us from having a ring instead, i.e. a field but without the commutative property and inverse elements.
The only thing is that then we would need to differentiate between different orderings of the terms of multivariate polynomial, e.g. the following would all be potentially different terms:while for a field they would all go into a single term:so when considering a polynomial over a ring we end up with a lot more more possible terms.
If the ring is a commutative ring however, polynomials do look like proper polynomials: Section "Polynomial over a commutative ring".