By default, we think of polynomials over the real numbers or complex numbers.
However, a polynomial can be defined over any other field just as well, the most notable example being that of a polynomial over a finite field.
For example, given the finite field of order 9, and with elements , we can denote polynomials over that ring as
where is the variable name.
For example, one such polynomial could be:
and another one:
Note how all the coefficients are members of the finite field we chose.
Given this, we could evaluate the polynomial for any element of the field, e.g.:
and so on.
We can also add polynomials as usual over the field:
and multiplication works analogously.
Articles by others on the same topic
There are currently no matching articles.