B3 Oxford physics course Updated +Created
users.physics.ox.ac.uk/~lvovsky/B3/ contain assorted PDFs from between 2015 and 2019
Syllabus reads:
  • Multi-electron atoms: central field approximation, electron configurations, shell structure, residual electrostatic interaction, spin orbit coupling (fine structure).
  • Spectra and energy levels: Term symbols, selection rules, X-ray notation, Auger transitions.
  • Hyperfine structure; effects of magnetic fields on fine and hyperfine structure. Presumably Zeeman effect.
  • Two level system in a classical light field: Rabi oscillations and Ramsey fringes, decaying states; Einstein
  • A and B coefficients; homogeneous and inhomogeneous broadening of spectral lines; rate equations.
  • Optical absorption and gain: population inversion in 3- and 4-level systems; optical gain cross section; saturated absorption and gain.
Professor in 2000s seems to be
But as of 2023 marked emeritus, so who took over?
Ewart is actually religious:
This dude is pure trouble for Oxford!
Laser Updated +Created
What makes lasers so special: Lasers vs other light sources.
Video 1.
How Lasers Work by Scientized (2017)
Source.
An extremely good overview of how lasers work. Clearly explains the electron/photon exchange processes involved, notably spontaneous emission.
Talks about the importance of the metastable state to achieve population inversion.
Also briefly explains the imperfections that lead to the slightly imperfect non punctual spectrum seen in a real laser.
Video 2.
Laser Fundamentals I by Shaoul Ezekiel
. Source. 2008, MIT. Many more great videos in this series.