This section is about the definition of the dot product over , which extends the definition of the dot product over .
Some motivation is discussed at: math.stackexchange.com/questions/2459814/what-is-the-dot-product-of-complex-vectors/4300169#4300169
The complex dot product is defined as:
E.g. in :
Just like the usual dot product, this will be a positive definite symmetric bilinear form by definition.
The definition of the "dot product" of a general space varies quite a lot with different contexts.
Most definitions tend to be bilinear forms.
We use the unqualified generally refers to the dot product of Real coordinate spaces, which is a positive definite symmetric bilinear form. Other important examples include:The rest of this section is about the case.
- the complex dot product, which is not strictly symmetric nor linear, but it is positive definite
- Minkowski inner product, sometimes called" "Minkowski dot product is not positive definite
The positive definite part of the definition likely comes in because we are so familiar with metric spaces, which requires a positive norm in the norm induced by an inner product.
The default Euclidean space definition, we use the matrix representation of a symmetric bilinear form as the identity matrix, e.g. in :so that:
Subcase of symmetric multilinear map:
The most important example is the dot product, which is also a positive definite symmetric bilinear form.
What happens to the definition of the orthogonal group if we choose other types of symmetric bilinear forms Updated 2024-12-15 +Created 1970-01-01
We looking at the definition the orthogonal group is the group of all matrices that preserve the dot product, we notice that the dot product is one example of positive definite symmetric bilinear form, which in turn can also be represented by a matrix as shown at: Section "Matrix representation of a symmetric bilinear form".
By looking at this more general point of view, we could ask ourselves what happens to the group if instead of the dot product we took a more general bilinear form, e.g.:The answers to those questions are given by the Sylvester's law of inertia at Section "All indefinite orthogonal groups of matrices of equal metric signature are isomorphic".
- : another positive definite symmetric bilinear form such as ?
- what if we drop the positive definite requirement, e.g. ?