Change of basis between symmetric matrices Updated +Created
When we have a symmetric matrix, a change of basis keeps symmetry iff it is done by an orthogonal matrix, in which case:
Congruent matrix Updated +Created
Two symmetric matrices and are defined to be congruent if there exists an in such that:
Definite matrix Updated +Created
The definition implies that this is also a symmetric matrix.
Matrix representation of a symmetric bilinear form Updated +Created
Like the matrix representation of a bilinear form, it is a matrix, but now the matrix has to be a symmetric matrix.
We can then immediately see that the matrix is symmetric, then so is the form. We have:
But because is a scalar, we have:
and:
Minkowski inner product matrix Updated +Created
Since that is a symmetric bilinear form, the associated matrix is a symmetric matrix.
By default, we will use the time negative representation unless stated otherwise:
but another equivalent one is to use a time positive representation:
The matrix is typically denoted by the Greek letter eta.
Sylvester's law of inertia Updated +Created
The theorem states that the number of 0, 1 and -1 in the metric signature is the same for two symmetric matrices that are congruent matrices.
For example, consider:
The eigenvalues of are and , and the associated eigenvectors are:
symPy code:
A = Matrix([[2, sqrt(2)], [sqrt(2), 3]])
A.eigenvects()
and from the eigendecomposition of a real symmetric matrix we know that:
Now, instead of , we could use , where is an arbitrary diagonal matrix of type:
With this, would reach a new matrix :
Therefore, with this congruence, we are able to multiply the eigenvalues of by any positive number and . Since we are multiplying by two arbitrary positive numbers, we cannot change the signs of the original eigenvalues, and so the metric signature is maintained, but respecting that any value can be reached.
Note that the matrix congruence relation looks a bit like the eigendecomposition of a matrix:
but note that does not have to contain eigenvalues, unlike the eigendecomposition of a matrix. This is because here is not fixed to having eigenvectors in its columns.
But because the matrix is symmetric however, we could always choose to actually diagonalize as mentioned at eigendecomposition of a real symmetric matrix. Therefore, the metric signature can be seen directly from eigenvalues.
Also, because is a diagonal matrix, and thus symmetric, it must be that:
What this does represent, is a general change of basis that maintains the matrix a symmetric matrix.