Magnetic hysteresis Updated +Created
To understand the graph, first learn/remember the difference between the magnetic B and H field.
The interest of the magnetic hysteresis graph is that it serves as an important characterization of a :
  • its area gives you the hysteresis loss of the transformer, which is a major cause of efficiency loss of the component
  • some key points of the curve give important characterizations of the core/material:
This curve will also tell you how many turns of the coil will be needed to reach the required field.
Figure 1.
Theoretical magnetic hysteresis plot
. Source.
Video 1.
Measurement of B-H characteristic
. Source.
1989. 1989 and they were making such awesome materials. It is hard to understand why university still exists given this.
Shows how you can obtain the magnetic hysteresis curve with an AC source plus an oscilloscope in XY mode. youtu.be/pXukVix5Pcw?t=193 clearly shows the measurement circuit.
Video 2.
Magnetic hysteresis experiment by UNSW Physics.
Source.
2020, thanks COVID-19. Like other UNSW Physics YouTube channel videos, the experimental setup could be made clearer with diagrams.
But this video does have one merit: it shows that the hysteresis plot can be obtained directly with the oscilloscope XY mode by using an AC source. The Y axis is just a measure of the total magnetic field induced by the primary coil + the magnetization of the material itself.
Videos of all key physics experiments Updated +Created
It is unbelievable that you can't find easily on YouTube recreations of many of the key physics/chemistry experiments and of common laboratory techniques.
Experiments, the techniques required to to them, and the history of how they were first achieved, are the heart of the natural sciences. Without them, there is no motivation, no beauty, no nothing.
School gives too much emphasis on the formulas. This is bad. Much more important is to understand how the experiments are done in greater detail.
The videos must be completely reproducible, indicating the exact model of every experimental element used, and how the experiment is setup.
A bit like what Ciro Santilli does in his Stack Overflow contributions but with computers, by indicating precise versions of his operating system, software stack, and hardware whenever they may matter.
It is understandable that some experiments are just to complex and expensive to re-create. As an extreme example, say, a precise description of the Large Hadron Collider anyone? But experiments up to the mid-20th century before "big science"? We should have all of those nailed down.
We should strive to achieve the cheapest most reproducible setup possible with currently available materials: recreating the original historic setup is cute, but not a priority.
Furthermore, it is also desirable to reproduce the original setups whenever possible in addition to having the most convenient modern setup.
Lists of good experiments to cover be found at: the most important physics experiments.
This project is to a large extent a political endeavour.
Someone with enough access to labs has to step up and make a name for themselves through the huge effort of creating a baseline of amazing content without yet being famous.
Until it reaches a point that this person is actively sought to create new material for others, and things snowball out of control. Maybe, if the Gods allow it, that person could be Ciro.
Tutorials with a gazillion photos and short videos are also equally good or even better than videos, see for example Ciro's How to use an Oxford Nanopore MinION to extract DNA from river water and determine which bacteria live in its for an example that goes toward that level of perfection.
The Applied Science does well in that direction.
This project is one step that could be taken towards improving the replication crisis of science. It's a bit what Hackster.io wants to do really. But that website is useless, just use OurBigBook.com and create videos instead :-)
We're maintaining a list of experiments for which we could not find decent videos at: Section "Physics experiment without a decent modern video".
Ciro Santilli visited the teaching labs of a large European university in the early 2020's. They had a few large rooms filled with mostly ready to run versions of several key experiments, many/most from "modern physics", e.g. Stern-Gerlach experiment, Quantum Hall effect, etc.. These included booklets with detailed descriptions of how to operate the apparatus, what you'd expect to see, and the theory behind them. With a fat copyright notice at the bottom. If only such universities aimed to actually serve the public for free rather than hoarding resources to get more tuition fees, university level education would already have been solved a long time ago!
One thing we can more or less easily do is to search for existing freely licensed videos and add them to the corresponding Wikipedia page where missing. This requires knowing how to search for freely licensed videos: