The Fundamental Theorem of Ideal Theory in number fields is a crucial result in algebraic number theory that connects ideals in the ring of integers of a number field to the arithmetic and structure of these numbers. Here's an overview of the key concepts involved: 1. **Number Fields**: A number field \( K \) is a finite degree field extension of the rational numbers \( \mathbb{Q} \).
Articles by others on the same topic
There are currently no matching articles.