Lazard's universal ring, denoted as \( L \), is a fundamental construction in algebraic topology, specifically in the context of homotopy theory and stable homotopy categories. It is a ring that encodes information about stable homotopy groups of based topological spaces. More formally, Lazard's universal ring can be thought of as a certain commutative ring that classifies vector bundles over spheres and, by extension, stable homotopy types of spaces.

Articles by others on the same topic (0)

There are currently no matching articles.