Liouville's equation is a fundamental equation in Hamiltonian mechanics that describes the evolution of the distribution function of a dynamical system in phase space. It is often used in statistical mechanics and classical mechanics. The equation can be written as: \[ \frac{\partial f}{\partial t} + \{f, H\} = 0 \] where: - \( f \) is the phase space distribution function, representing the density of system states in phase space.
Articles by others on the same topic
There are currently no matching articles.