Sendov's conjecture is a hypothesis in the field of complex analysis and polynomial theory, proposed by the Bulgarian mathematician Petar Sendov in the 1970s. The conjecture addresses the relationship between the roots of a polynomial and the locations of its critical points. Specifically, Sendov's conjecture states that if a polynomial \( P(z) \) of degree \( n \) has all its roots in the closed unit disk (i.e.
Articles by others on the same topic
There are currently no matching articles.