Superconductivity is a phenomenon where certain materials exhibit zero electrical resistance and expulsion of magnetic fields when cooled below a characteristic critical temperature. This means that once a current is established in a superconducting circuit, it can flow indefinitely without energy loss. ### Key Features of Superconductivity: 1. **Zero Resistance**: When a material transitions into a superconducting state, its electrical resistance drops to zero. This allows for the perfect conduction of electricity.
Articles by others on the same topic
Experiments:
- "An introduction to superconductivity" by Alfred Leitner originally published in 1965, source: www.alfredleitner.com/
- Isotope effect on the critical temperature. hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html mentions that:
If electrical conduction in mercury were purely electronic, there should be no dependence upon the nuclear masses. This dependence of the critical temperature for superconductivity upon isotopic mass was the first direct evidence for interaction between the electrons and the lattice. This supported the BCS Theory of lattice coupling of electron pairs.
20. Fermi gases, BEC-BCS crossover by Wolfgang Ketterle (2014)
Source. Part of the "Atomic and Optical Physics" series, uploaded by MIT OpenCourseWare.Actually goes into the equations.
Notably, youtu.be/O_zjGYvP4Ps?t=3278 describes extremely briefly an experimental setup that more directly observes pair condensation.
The Map of Superconductivity by Domain of Science
. Source. Lacking as usual, but this one is particularly good as the author used to work on the area as he mentions in the video.Lecture notes:
Transition into superconductivity can be seen as a phase transition, which happens to be a second-order phase transition.