Something analogous to a group isomorphism, but that preserves whatever properties the given algebraic object has. E.g. for a field, we also have to preserve multiplication in addition to addition.
Other common examples include isomorphisms of vector spaces and field. But since both of those two are much simpler than groups in classification, as they are both determined by number of elements/dimension alone, see:we tend to not talk about isomorphisms so much in those contexts.
Like isomorphism, but does not have to be one-to-one: multiple different inputs can have the same output.
The image is as for any function smaller or equal in size as the domain of course.
This brings us to the key intuition about group homomorphisms: they are a way to split out a larger group into smaller groups that retains a subset of the original structure.
As shown by the fundamental theorem on homomorphisms, each group homomorphism is fully characterized by a normal subgroup of the domain.
Ultimate explanation by Ciro Santilli: math.stackexchange.com/questions/776039/intuition-behind-normal-subgroups/3732426#3732426